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10.7  Design of Interplanetary Orbits

Faster Trajectories
Ron Noomen, Delft University of Technology

Using the recipe given in Table 10-29, one can com-
pute the parameters of a Hohmann transfer between any
pair of planets in a straightforward manner. Attractive as
it is from an energy and computational point of view, a
Hohmann transfer does have a number of drawbacks: (1)
the launch epoch is very strict, with little or no room for
deviations (at least ideally; pericenter and apocenter are
by definition on opposite sides of the central body, with
consequences for the departure and arrival epochs), (2)
the time-of-flight may be too long for some applications,
and (3) although it represents the most energy-efficient
direct transfer, the total ΔV required for a direct trip to
distant planets may simply be too large to be delivered by
even the most powerful combination of launcher, upper
stage and on-board engine (an indirect trajectory, involv-
ing planetary flybys, could provide a solution; more on
this in Sec. 10.7.1).

In order to compensate for the first 2 drawbacks, one
might consider to leave the departure planet (e.g., Earth)
under conditions which are different from those of a
Hohmann transfer; a similar flexibility can be introduced
for the arrival geometry. This is the most general situa-
tion as sketched in Fig. 10-28. Clearly, our vehicle now
follows an elliptical orbit with dimensions that exceed
those of a Hohmann transfer orbit. As shown in
Fig. 10-28, it can reach the orbit of the target planet on its
way out, before reaching apocenter; in such a case we
speak of a so-called Type-I transfer, which is clearly fast-
er than a Hohmann transfer. In case the orbit of the target
planet is reached after having passed the apocenter, we
speak of a Type-II transfer, which has a longer transfer
time compared to a Hohmann transfer. Both options
(Type-I, Type-II) can have advantages and disadvantag-
es (travel time, ΔV, departure, and arrival geometry, pos-
sibilities for continuation to another planet), so both
should be considered.

In Table 10web-1, where use is made again of the
patched conics approach, and where the departure condi-
tions are given by the position of the departure planet,
and a vectorial excess velocity V∞,1. This excess velocity
has a magnitude and a direction; the latter is specified by
an angle α with respect to the tangential direction (note
that it is different from the more common flight path an-
gle φ). By virtue of the assumption of unperturbed Kepler
orbits, all other parameters follow unambiguously. In
general wording, this approach is called “forward propa-
gation”: define new initial conditions (e.g., at Earth) and

compute the parameters when crossing the orbit of the
target planet, at another epoch (the assumption of unper-
turbed Kepler orbits allows one to do so without doing a
lengthy numerical integration). One warning is appropri-
ate, though; one should check whether the conditions are
favorable to reach the orbit of the target planet at all. If
not, one should stop after Step 12 for an inbound mission
and after Step 13 for an outbound mission; if needed,
proceed with a new vector V∞,1. Since we are dealing
with circular orbits of the departure and target planets, the
characteristics of the transfer orbit and related parameters
only depend on the relative geometry of the two planets,
the absolute positions do not matter. The epochs of depar-
ture and arrival can be computed with the equations given
in Sec. 10.7.2, previously, with the travel time TH re-
placed by Ttr and the transfer angle π (valid for a Hohm-
ann transfer) replaced by Δν = ν2–ν1 (the true anomaly of
the satellite, at departure and arrival, respectively).      

Comparing the values given in Tables 10-29 and
10web-1, it is clear that the transfer time can be reduced
significantly; in this example, the reduction is by a factor
of 3.5. However, this fast solution does not come for free:
the amount of ΔV required increases by a factor of almost
4 (with major consequences for the amount of propellant,
of course). The conditions of the example in Table
10web-1 are (deliberately) way off those for a Hohmann
transfer; following the same recipe one can easily study
the effect of minor variations with respect to the Hohm-
ann conditions (in departure epoch, in ΔV0, in launch di-
rection). 
Lambert Problem

In Sec. 10.7, two possibilities have been presented to
travel from planet A to planet B: a Hohmann transfer and
an arbitrary Kepler orbit (using the technique of forward
propagation). The first option is easy but limited in re-
sults, whereas the second option leaves questions on the
proper combination of the departure conditions: launch
epoch, excess velocity and direction thereof. In reality,
designers of interplanetary missions use a technique that
reverses the formulation of the problem: assuming that
the epochs of departure and arrival are known, the ques-
tions now become: what are the parameters of the Kepler
orbit connecting the two? What is the corresponding ΔV?
What are the departure and arrival geometries? What is
the time-of-flight? This problem is generally referred to
as the Lambert problem. In this web article, the essential
formulas to solve this problem for high-thrust propulsion
are presented. The method also serves as a good starter
for the design of low-thrust trajectories. The theory for
tackling the Lambert problem is taken from Gooding
[1990].           

Referring to Fig. 10web-1, the Lambert problem is
easily formulated: knowing an initial position r1, a final
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Table 10web-1.  Summary of the Procedure to Compute the Characteristics of an Arbitrary Interplanetary Transfer.
The meaning of the parameters is explained in the main body of the text. The example values hold for a trip from the Earth
(at 1.0 AU) to Mars (at 1.52366 AU), with circular parking orbit altitudes of 185 and 500 km, respectively. The vehicle leaves
(the sphere-of-influence of) the Earth with a V∞,1 of 10 km/s which is directed at an angle α of 15 deg with respect to the

tangent of the circular orbit. The “*” sign indicates that care must be taken to choose the proper quadrant (use the atan2 function; see
App. D.4); the “**” sign indicates that the proper sign of V2,rad must be chosen (depending on a Type-I or Type-II transfer).

Step Parameter Expression Example

1 Vdep (heliocentric velocity of departure planet) 29.784 km/s

2 Vtar (heliocentric velocity of target planet) 24.129 km/s

3 Vc0 (circular velocity around departure planet) 7.793 km/s

4 Vc3 (circular velocity around target planet) 3.315 km/s

5 V1,rad (radial heliocentric velocity at departure position) 2.588 km/s

6 V1,tan (tangential heliocentric velocity at departure position) 39.444 km/s

7 V1 (heliocentric velocity at departure position) 39.529 km/s

8 H (specific angular momentum) 59.01 108 km2/s

9 φ1 (flight path angle at departure position) (*) 3.754 deg

10 atr (semi-major axis of transfer orbit) 6.27 108 km

11 etr (eccentricity of transfer orbit) 0.763

12 rp (pericenter distance) 1.49 108 km

13 ra (apocenter distance) 11.05 108 km

14 V2 (heliocentric velocity at target position) 30.866 km/s

15 V2,tan (tangential heliocentric velocity at target position) 25.887 km/s

16 V2,rad (radial heliocentric velocity at target position) (**) 16.810 km/s

17 V∞,2 (excess velocity at target position) 16.901 km/s

18 φ2 (flight path angle at target position) (*) 32.997 deg

19 V0 (velocity at pericenter of hyperbola around departure planet) 14.882 km/s

20 V3 (velocity at pericenter of hyperbola around target planet) 17.540 km/s

21 ΔV0 (maneuver at pericenter around departure planet) 7.089 km/s

22 ΔV3 (maneuver at pericenter around target planet) 14.224 km/s

23 ΔVtot (total velocity change) 21.313 km/s

24 ν1 (true anomaly at departure position) (*) 8.680 deg

25 ν2 (true anomaly at target position) (*) 78.576 deg

26 E1 (eccentric anomaly at departure position) 0.056 rad

27 E2 (eccentric anomaly at target position) 0.583 rad

28 M1 (mean anomaly at departure position) 0.013 rad

29 M2 (mean anomaly at target position) 0.163 rad

30 Ttr ( transfer time) 6.47×106 s = 74.9 
days = 0.205 yrs
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Table 10web-2. Summary of the Procedure to Compute the Characteristics of a Kepler Orbit Connecting Two Arbi-
trary Points (i.e., the High-Thrust Lambert Problem). The meaning of the parameters is explained in the main body of the
text. The example values refer to a hypothetical trip from the Earth (at 1.0 AU, parking orbit at 185 km) to Mars (at 1.52366
AU, parking orbit at 500 km), with a Δθ of 90 deg and a travel time Δt of 95 days. Step 9 (solution for “x”) is typically done with

a Newton-Raphson iteration (see [Gooding, 1990] for suggestions for an initial value of “x”). 

Step Parameter Expression Example
1 Vdep (heliocentric velocity of departure planet) 29.784 km/s

2 Vtar (heliocentric velocity of target planet) 24.129 km/s

3 Vc0 (circular velocity around departure planet) 7.793 km/s

4 Vc3 (circular velocity around target planet) 3.315 km/s

5 c (chord) 272.6 106 km

6 s (constant) s = (r1 + r2 + c) / 2 325.1 106 km
7 T (normalized time-of-flight) 1.443

8 q (constant) 0.402

9 x (new governing parameter), where solution of
T – 2 [x-qz(x)-d(x)/y(x))] / Elam(x) = 0

0.783

9a Elam (parameter) Elam = x2 -1 -0.386

9b       y (parameter) 0.621

9c       z (parameter) 0.968

9d       f (parameter) f = y(z-qx) 0.406
9e       g (parameter) g = xz – q Elam 0.914

9f       d (parameter) d = atan(f/g) (for Elam<0);
d = ln(f+g) (for Elam>0)

0.418

10 atr (semi-major axis transfer orbit) atr = s / (2(1-x2)) 4.208 108 km

11 γ (constant) 4.644 109 km2/s

12 ρ (constant) ρ = (r1 – r2) / c -0.287

13 σ (constant) 0.958

14 Vr,1 (radial velocity at departure) Vr,1 = γ [(qz-x) – ρ(qz+x)] / r1 -1.789 km/s

15 Vr,2 (radial velocity at target) Vr,2 = - γ [(qz-x) + ρ(qz+x)] / r2 14.902 km/s

16 Vtan,1 (tangential velocity at departure) Vtan,1 = γ σ (z+qx) / r1 38.153 km/s

17 Vtan,2 (tangential velocity at target) Vtan,2 = γ σ (z+qx) / r2 25.041 km/s

18 V∞,1 (excess velocity at departure position) 8.558 km/s

19 V∞,2 (excess velocity at target position) 14.930 km/s

20 V0 (velocity at pericenter of hyperbola around departure planet) 13.954 km/s

21 V3 (velocity at pericenter of hyperbola around target planet) 15.649 km/s

22 ΔV0 (maneuver at pericenter around departure planet) ΔV0 = │V0 – Vc0│ 6.161 km/s

23 ΔV3 (maneuver at pericenter around target planet) ΔV3 = │Vc3 – V3│ 12.334 km/s

24 ΔVtot (total velocity change) ΔVtot = ΔV0 + ΔV3 18.494 km/s
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position r2 (note: both expressed as vectors in space), and
the time-of-flight Δt between the two positions, what are
the specifics of the Kepler orbit connecting the two posi-
tions? For the sake of brevity, we will only consider the
situation where our vehicle travels from P1 to P2 in a
counterclockwise direction, and does so directly, as illus-
trated in Fig. 10web-1 (i.e., without completing more
than a full orbit). For a discussion on the more general
case, refer to Gooding [1990].     

The expressions used to derive the solution, including
the heliocentric velocities at P1 and P2, are summarized
in Table 10web-2. Steps 1–4 relate to the velocities of
the planets and to the circular orbits around them, and are
common with those of the Hohmann and forward propa-
gation techniques (see Tables 10-29 and 10web-1); the
essential formulations to solve the Lambert problem are
given in steps 5–17. The table is completed with a nu-
merical example, again for an arbitrary transfer between
the Earth and Mars. In this example, the departure and ar-
rival vectors are assumed to be at right angles (Δθ = 90
deg), and the required trip time is hypothesized to be 95
days. More realistic combinations of Δθ and trip time
would follow directly from the user’s model for the plan-
etary ephemerides: assuming departure and arrival ep-
ochs (e.g., depart from the Earth on May 1, 2015, and
arrive at Mars on October 17, 2015) gives the positions
of the planets, including the angle Δθ in between, direct-
ly. According to this example, wanting to cover 90 deg
in a mere 95 days is a bad idea: it would require a total
ΔV of 18.494 km/s, which although better than the (also
arbitrary) example in Table 10web-1, is still much worse
than the Hohmann transfer illustrated in Table 10-29.      

Apparently, we introduced a rather bad example in Ta-
ble 10web-2; the transfer would still cost us a total ΔV of
18.5 km/s. However, the Lambert formulation has one
huge advantage: it provides the opportunity to assess a
wide range of trajectory options rapidly. By varying the
departure and arrival epochs (which then directly give the
positions of the departure and target planets, hence Δθ, and
the trip time), one can easily identify a range of corre-
sponding ΔV values and select the settings (i.e., epochs) of

the most attractive solution (in the sense of minimum ΔV,
or geometrical conditions). As general advice, one could
start with the computation of the conditions for a Hohmann
transfer first (including the determination of the launch and
arrival epochs, using Table 10-29 and the equations in the
section on “Timing”), and then use the Lambert technique
to search for the real optimum using refined, 3-dimension-
al planetary ephemerides, or assess the sensitivities of a
first-order solution by using the recipe in Table 10web-2.
Since the outcome of a Lambert solution is driven by the
dates of departure and arrival (i.e., translated into the posi-
tions of the departure and target planets plus the time of
flight), it is appropriate to give an advise for the interval in
which the optimal combination of epochs t1 and t2 can be
found. In case of a direct flight from Earth to Mars, search-
ing in a window of about 50 days around the epochs that
come out of the Hohmann solution should be fine. For trips
to inner planets one can do with a smaller search interval,
whereas for trips to more distant planets, a somewhat larg-
er window is to be used. In case that our proposed mission
scenario takes the vehicle along a succession of planets
(i.e., planetary flybys; see main text), the entire mission
consists of a series of so-called “legs” and the search inter-
vals for the flyby epochs should become larger.      

Pork Chop Plots  
To identify the best possible trajectory, one can con-

sider to launch and arrive on a range of dates, and see
what to pay (or possibly gain) in terms of ΔV and time-
of-flight for all possible pairs of dates. Typically, this is
done using a straightforward application of the Lambert
formulation as presented in Table 10web-2. Often, the
results of the various trajectory proposals are used in an
optimization. This topic will not be discussed in this
chapter; refer to standard works on the matter such as
Kirk [1998], Lawler and Wood [1966], Munkres [1957],
Myatt et al. [2003], Ross and D’Souza [2005], Winston
[2004], Conway [2010] and Kemble [2006], or publica-
tions on popular enumerative optimization techniques
(e.g., Goldberg [1989], Michalewicz [1996], Kennedy
and Eberhart [1995], Wilke [2005] Price et al. [2005],
Feoktistov [2006], Kirkpatrick et al [1983] ). Here, we
will give some results only. As an example, Fig. 10web-
2 illustrates the ΔV and the time-of-flight for one-way
trips between the Earth and Mars (starting from a parking
orbit at 185 km altitude above the Earth and ending up in
a circular orbit at 500 km above Mars’ surface). In the
calculations, the date of departure is successively run
through the interval January 1, 2010 to January 1, 2020,
and for each departure date the most attractive flight (in
terms of minimum ΔV) is shown in the plot on the left.
The corresponding time-of-flight is instead shown in the
plot on the right. The calculations have been done for real
ephemerides of the planets, taken from JPL’s DE200
Standish [1982] (a more recent version is DE405
Standish [1998]).      

First of all, Fig. 10web-2 clearly shows the effect of
the planetary geometry on such a transfer: in some situa-
tions we can fly the mission with relatively little ΔV,

Fig. 10web-1. Illustration of Lambert Problem.
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whereas in other situations, the planetary configuration is
very unattractive. Clearly, the optima repeat after slight-
ly more than 2 years, nicely matching the synodic period
whose precise value is included in Tables 9-5 and 9-6.
An idealized Hohmann transfer between Earth (at 1 AU)
and Mars (at 1.52366 AU) would take a ΔV of 5.68 km/s,
and a time-of-flight of 0.709 yr (see Table 10-29).
Fig. 10web-2 also shows the effect of the real ephemeri-
des of the two planets: for example, the values for the op-
tima (i.e., the minimum values) show some variation,
meaning that in some years it is more attractive to do this
transfer than it is in other years.

A typical approach to get more insight into such prob-
lems is to generate (or use, for that matter) pork chop
plots. In such plots, the ΔV is given as a function of de-
parture date and flight time. As an example, Fig. 10web-
3 shows a pork chop plot for the same transfer as in Fig.
10web-2. The situation where the total ΔV takes a mini-
mum value corresponds with a Hohmann transfer.  

One can easily compute such pork chop plots, using
the theory presented in Table 10web-2 (it is a straightfor-
ward end-to-end computation, driven by a range of pos-
sible dates for departure from Earth and for arrival at
Mars). An alternative is to use the information that is
available in publications such as Sergeyevsky and Cun-
niff [1987]. Note that in Figs. 10web-2 and 10web-3, we
have shown the total amount of ΔV, which is a quantity
that needs to be produced physically by the high-thrust
rocket engine (remember: ΔVtot = │ΔV0│ + │ΔV3│, see

Tables 10-29 and 10web-2). In literature, you may find
similar plots which show different parameters, such as the
value of C3 at departure (C3 = V∞2). However, the actual
(propellant-demanding) acceleration and deceleration are
represented by the maneuvers ΔV0 and ΔV3, and are given
in the two parking orbits. As mentioned earlier, they can
differ significantly from the excess velocities V∞.         

Fig. 10web-2. ΔV (Left) and Time-of-Flight (Right) Required for a One-Way Transfer Between an Orbit at 185 km
Above the Earth and an Orbit at 500 km above Mars’ Surface, as a Function of the Launch Date.
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Fig. 10web-3. Pork Chop Plot of the Total ΔV for a Transfer
from the Earth (parking orbit at 185 km) to Mars (target orbit
at 500 km altitude).
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