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Statistical Errors
Geoffrey N. Smit, The Aerospace Corporation

Reproduced with permission from Orbit and Constella-
tion Design and Management [Wertz, 2009], Appendix C. 

This appendix is an analytic introduction to error anal-
ysis. The flow of topics is summarized in Fig. Gweb-1.
Section 6.3 provides an introduction to error analysis and
a general recipe for adding errors in an error budget. The
process of creating an error budget is introduced and
discussed in detail with tables of error sources in Sec. 6.3.
Chapter 8 provides an introduction to spacecraft position
and attitude measurements. Specifically, Sec. 7.2 in
OCDM by Wertz [2009] provides a detailed assessment
of the evaluation of measurement uncertainty on the
celestial sphere and Sec. 7.6 in OCDM describes good
and bad measurement sets (in terms of uncertainty) and a
set of practical tests to determine them. 

G.1  Probability Considerations

The basic problem to be addressed is:
Given: a set of components with errors e1, e2, … with
known probability distributions. The components are
combined in a system such that the output error is 

e = e1 + e2 + … + en (Gweb-1)

Find: the probability distribution of e.   

Note that e is a function of several random variables.
To proceed, we first summarize some of the concepts and
definitions of probability distributions involving several
variables in order to fix notation and terminology.

Consider first probability on the real line (i.e., we con-
sider “events” labelled by real numbers—such as a
measurement, x). The probability that x ≤ y, Prob({x ≤
y}), is denoted P(y). P(y) is defined to be the probability
distribution. Assuming that the derivative exists

(Gweb-7)

is called the probability density function, or pdf. p(y) dy
is the probability that x lies between y and y + dy and

(Gweb-8)
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Fig. Gweb-1. Sequence of Topics in this Appendix.

Goal: to find the probability distribution 
of e, given the distributions of ei

How to find p(e) 
—  In general
—  In the simplified case that the ei are independent. In this case, 
      closed form solutions are available via Fourier Transforms

If finding p(e) is intractable, how to find moments 
of p(e) from moments of the pi(ei) 

Interpretation of the variances (second moments) 
in terms of probabilities, depending on the dimensions of “e”

Define probability distributions
–  e depends simultaneously on all the ei—vector of ei is drawn from a 

multivariate distribution
–  Each ei is drawn from a univariate “marginal” of the multivariate (joint) 

distribution
–  Independence of the ei (defined via conditional probabilities) impacts 

tractability of the problem

Using the time evolution of the system (and hence its spectral 
properties) as a means to reduce conservatism.  Involves the 
introduction of some concepts in Stochastic Processes.
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 As noted in Sec. 6.3, the more general problem is 

e = F(e1, e2, …, en) (Gweb-2)

F may, in general, depend on the state of the sys-
tem—i.e., if the component contributions are

xi = di + ei, (i = 1, …, n) (Gweb-3)

then the system output is some function, G(x), which
can be decomposed into the nominal output, G(d), and
the error, 

G(x) = G(d) + F(x) (Gweb-4)
G can usually be expanded in a Taylor series. When
this is the case, we have 

G(x) = G(d) + eG'(x) + higher order terms (Gweb-5)
This gives the system error, 

F = G(x) – G(d) ≈ eG'(x) (Gweb-6)
which is a weighted sum of the ei, with coefficients
which are functions of the state, x.

A weighted sum can always be scaled to be a pure
sum. Therefore we will concentrate on the case of a
pure sum, since we have seen that it covers the major-
ity of cases of interest. Also, it allows us to derive a
number of concrete results which would be less
understandable in a more general setting.

If, for some reason, it is desired to retain a func-
tional form other than a sum, this does not impact the
conceptual basis for much that follows. For example,
a worst case estimate of the system error can readily
be produced (and it typically will be too conserva-
tive), and computational schemes can be devised to
estimate the probability distribution of e or quantities
related to this probability distribution.  
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In the definition of the probability distribution, there
are two variables (I’ve called them x and y). The variable
y is the actual argument of the probability distribution. x
is a “dummy variable”, introduced for explanatory rea-
sons. Thus, P(y) = Prob{x ≤ y}, means that any
“experiment” performed on the system described by P
will yield an outcome less than or equal to y on P fraction
of the trials. Thus, as shown in Fig. Gweb-2, P is mono-
tonically increasing. In the case of the probability
density, we are focussing attention on the neighborhood
of a single point, “y”. It is not uncommon to see terminol-
ogy like “the probability that y lies between y and y + dy
is given by p(y)dy”.  

The variable, x, used to label points or “events” in our
probability sample space is called a random variable or
variate. I use the terms “variable,” “random variable,”
and “variate” interchangeably.* The sample space need
not be the real line. It could be n-dimensional space (i.e.,
n copies of the real line), or, in general, any suitable set.

Measurements of angles, distances, brightnesses, or
frequencies are all random variables. The result of any
particular measurement would be a single real number,
the value of which includes some element of chance. The
associated probability densities would usually be peaked
around the true value of the item being measured, and
would be negligible far away from the true value as
shown in Fig. Gweb-3. 

Examples of multidimensional random variables
include measurements of “physical” vectors such as the
3-dimensional velocity vector of an object   and the argu-
ments of functions of several 1-dimensional random
variables. For example, to determine the area of a rectan-
gle, we have to measure two lengths. This input “vector”
would be a 2-dimensional random variable. The pointing
errors of a spacecraft typically depend on the value of
numerous parameters (such as sensor readings, tempera-

tures, structural deformations) and this input vector
would be a multidimensional random variable. Random
variables can also be discrete, i.e., limited to a finite
number of values. Examples are the outputs of coin or die
tossings. The output from a digital sensor is discrete.

For a multi-dimensional random variable, the proba-
bility density has the form 

p(x1, x2, …, xn) (Gweb-9)

This gives the probability that x will be found in the
hypercube 

{(x1, x1 + dx1), (x2, x2 + dx2), …, (xn + dxn)} (Gweb-10)

The multi-dimensional probability distribution is defined
as 

P(y) = Prob{x1 ≤ y1, …., xn ≤ yn} (Gweb-11)

and we have p(x)

(Gweb-12)

 The system errors that we are trying to estimate
depend on the input errors contributed by numerous
components, i.e., the system error depends on a multi-
variable probability distribution. In general, we don’t
have any data on this multivariable distribution, per se.
What we have is data on the distribution of each of the
inputs. We may also have some information on whether
some of these inputs interact with each other so that the
value measured by one input may be coordinated with
that measured by another. We are thus faced with the task
of building up the multivariable distribution from its
“projection” on each of the input axes. This brings us to
the topic of such projections (marginal distributions),
and the topic of interdependence between the inputs
(conditional probabilities).

Marginal Distributions 
One can “integrate out” some of the variables of a

multivariate distribution function, leaving a probability
distribution in the remaining variates.† 

For example,

(Gweb-13)

Fig. Gweb-2.  Probability Distribution P(y) vs. y.

* Intuitively, the idea of a random variable is fairly clear—there
is an element of chance in any given “reading” of x, i.e., x is
drawn from some probability space (“black bag”) at random,
and the likelihood that it will have any particular value is given
by its probability density. The mathematical theory was origi-
nally developed to describe various games of chance. The sub-
ject only became mathematically respectable after its
foundations had been worked out independent of references to
these intuitive notions. A rapid increase in the rate of progress
occurred at this point. (See Kac [1989].)
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Fig. Gweb-3. A Discrete Probability Density Function.
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leaves a density

(Gweb-14)

P1 and p1 are called the marginal distribution function
and marginal density of x1 associated with p(x1, …, xn)
and P(x1, …, xn). Marginal distributions of x2, x3, … can
be similarly defined. The figure below illustrates the
marginals of a bivariate probability density. (The geom-
etry of the figure also illustrates why they are
called marginals.) 

The multivariate density, p, is called the joint density
associated with these variates. Similarly we can define
the joint distribution.

While a given multivariate distribution function (or
density) will have unique marginals, the inverse problem
of finding a joint distribution given the marginals does
not have a unique solution. In the error analysis problem
being addressed in this section, the information that we
have about the joint distribution of the errors, ei, comes

from its marginals, the pi, and the correlations between
the ei.* In addition to the uniqueness issue mentioned
above, for some marginal distributions not all correlation
coefficients (between –1 and +1) are possible, so that we
must also observe bounds on the correlations we input to
the problem. Assuming that we have posed the problem
properly, we can in principle generate a joint distribution
(e.g., via a Monte Carlo simulation) consistent with the
marginals. Table Gweb-1 lists a number of common
probability distributions used in statistics.

† The significance of the integration is as follows. For simplic-
ity consider the two variable case. The multivariate probabil-
ity distribution function, p(x1, x2)dx1dx2 is the probability that
x1 and x2 will lie in {(x1, x1 + dx1), (x2, x2 + dx2)}. {∫[p(x1,
x2)dx2]}dx1 is the probability that x1 and x2  will lie in the strip
{(x1, x1+dx1), any x2}, i.e., we’ll “accept” any measurement
which has x1 in (x1, x1 + dx1) regardless of the x2 value.

1 1
1 1

1

( )( ) =
dP xp x

dx

Fig. Gweb-4. Joint (Bivariate) Probability Density Showing
Marginals on Each of the Axes.

* The word “correlation” has a technical meaning which will
be defined later. It refers to the degree to which the values of
random variables are interrelated.

Marginal on y-axis

Bivariate Density

Marginal on x-axis

p

y

x

Table Gweb-1. Some Common Probability Distributions.

Name, Comments
Probability 

Density Function Graph
Mean, M 

Variance, V Characteristic Function

Uniform Distribution
Arises during quantization

p(x) = 1/(b – a), a<x<b 
       = 0, otherwise

M = (a+b)/2
V = (b – a)2/12

(exp(sb) – exp(sa))/(b – a)s

Normal
Ubiquitous: arises via sums, 
also as the limit of some 
distributions

M = a
V = s2

exp(at + s2/2)

Rayleigh
Distribution 
of radial error with normal 
components

M = 

V = ((4 – π)/2)s2

Complicated

Cauchy
Ratio of two normal variates. 
Also, geometric meaning (tan 
of a uniformly distributed 
variate)

M = b
Variance diverges

exp(–bs – a|s|)

Poisson
Prob. of getting k of 
independent events 
(discrete)—model of shot 
noise, etc.

(prob of a negative number of 
occurrences = 0)

M = λ
V = λ

exp[λ{exp(s) – 1}]

Binomial*
Prob. of getting k wins in m 
trials, each with prob of 
success, p = 1 – q

M = mp
V = mpq

[1 + p{exp(s) – 1}]m

*The Bernoulli distribution is a binomial distribution with m = 1
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Table Gweb-1, Fig. Gweb-4, Eq. Gweb-14
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Conditional Probabilities and Independence 
Random variables can be coupled, so that the values

taken on by one may give us information about the oth-
ers. For example, a spacecraft structural distortion may
be related to a temperature change. The probability that
an event A occurs, given that event B has occurred, is
written P(A|B) and said “probability of A, given B.” From
the definition,  

P(A,B) = P(A|B)P(B) (Gweb-15)

i.e., the probability of A and B is the probability of B
times the probability of A given B.

The events A and B are called independent if 

P(A|B) = P(A) (Gweb-16)

which is the same as 

P(A,B) = P(A)P(B) (Gweb-17)

In this case, the densities can also be written as prod-
ucts, e.g.,* 

p(x1, x2) = p(x1)p(x2) (Gweb-18)

Later, we will introduce the moments of probability
densities. These provide simple measures of various
attributes of the density function. The “correlation” will
be a moment quantifying the extent to which the variates
in a multivariate density are independent.

Functions of Random Variables 
Given a random variable, x, with density p(x) or a set

of random variables, x1, x2, …, xn, with density p(x1, x2,
…, xn), we frequently need to determine the density cor-
responding to some function of x or of x1, x2, …, xn. This
is the central issue of the error combination problem.

 First look at the one dimensional case. Let 

y = y(x) (Gweb-19)
If y is a monotonic function, we have 

Py (y) =Px[x(y)] (Gweb-20)

and 

py(y) |dy| = px [x(y)] |dx| (Gweb-21)

i.e., 

py(y) = p[x(y)] |dx/dy| (Gweb-22)

For example, if x has density function p(x), and 

y = 3x + 1 (Gweb-23)

then y has density function 

q(y) = p((y – 1)/3)/3 (Gweb-24)

As a second example, if x has density function p(x),

and y = x2, then y has the density function 

(Gweb-25)

The pairing of terms here derives from the fact that y is
not monotonic.

Similarly, in the multivariate case, if 

x = (x1, …, xn) (Gweb-26)

and 

y = (y1, …, yn) (Gweb-27)

are related by a one-to-one transformation, then 

Py(y) = Px[x(y)] (Gweb-28)

and 

py(y) = px[x(y)]|∂x/∂y| (Gweb-29)

where |∂x/∂y| is the Jacobian. The basic idea is that we
solve for x in terms of y and substitute this into the argu-
ment for the density (in the obvious way) to yield a
function of y, and we also rescale the function so that the
integral of the density is one.

The process becomes more complicated if we map
onto a space of fewer dimensions, e.g., 

y = (y1, …, ym) (Gweb-30)

and 

x = (x1, …,xn), m < n. (Gweb-31)

A special case of this is the sum, y = x1 + … + xn. We are
taking a generalized sort of marginal, and we need to
integrate out some of the variables. The problem is to
determine what needs to be integrated out. This is usually
more easily done in the case of the probability distribu-
tion, as opposed to the density. For example, assume we
have:

yi = yi(x1, …, xn), i = 1, .., m (Gweb-32)

The marginal distribution,  is, by definition, the
probability that “y1 ≤ Y1” as shown in Fig. Gweb-5, for
2-dimensions. In “y – space”, the set of all appropriate
y’s is the shaded area. 

* Independent variates have many mathematical similarities to
orthogonal coordinate systems. In particular, they tend to
make the algebra much simpler than coupled variates and
non-orthogonal coordinates, respectively.

Fig. Gweb-5. Shaded Region Represents the Set of Points
for Which the y1 Component is Less than or Equal to Y1.
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Table Gweb-1 , Fig. Gweb-5, Eq. Gweb-32
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To find  we need to associate a probability
density with each part of the shaded region, and then
integrate (see Fig. Gweb-6). Since we only know the
density function in the x-space, we must find the corre-
sponding region there, and integrate there. Thus, for the
distribution,  = probability that y1 ≤ Y1, we need
to integrate over all combinations of the x’s which yield
a y1 ≤ Y1:

(Gweb-33)

(similarly for y2, y3, …). The corresponding joint proba-
bilities are

(Gweb-34)

Depending on the nature of the function y, this can
take some effort. Similarly, the densities can be found by
either (1) differentiating the P’s, or (2) integrating the
px’s over suitable subsets of x space. The next section
illustrates this for the special case where y  = x1 + x2 +
…+ xn.

G.2   Addition of Random Variables

Here we have a single function, y = y (x1, x2,…xn)
given by 

y = x1 + x2 + …+ xn. (Gweb-35)

We shall first reproduce the above analysis for this
special case. It turns out that when the variables are inde-
pendent, the analysis can be significantly simplified—in
fact, all the standard “textbook” results for the addition
of random variables are for independent random vari-
ables. We will point out below how these simplifications
occur.

For simplicity, first consider the case of two vari-
ables. Let the joint distribution of x1 and x2 be Px(x1,
x2) and the density be px(x1, x2). As shown graphically
in Fig. Gweb-7, the probability that x1 + x2 ≤ Y say is
given by the integral of px over the shaded region, i.e.,
over all points x1, x2 such that x1 + x2 ≤ Y. 

Hence, 

(Gweb-36)

The density is given by:

(Gweb-37)

This type of analysis is easily extended to more than
two variables. In general, the formulas get very compli-
cated unless the variables are independent. The main
exception is if Px is multivariate Gaussian. The underly-
ing reason for the normal distribution retaining its
tractability, even in the presence of correlations, is the
fact that we can always transform to a new set of variates
which are independent. 

In the case where the xi are independent, the analysis
can be simplified as follows. Starting again with the two
variate case, we have 

p(x1, x2) = p1(x1) p2(x2) (Gweb-38)

and 

y = x1 + x2 (Gweb-39)

(Gweb-40)

Fig. Gweb-6. Shaded Region is the Set of Points for which
y1(x1...xn) ≤ Y1.
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Fig. Gweb-7.  Shaded Region is the Set for Which x1 + x2 ≤ Y.
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This is suggestive of the convolution of p1 and p2, and
invites the use of Fourier transforms. In probability the-
ory, the Fourier transform of a density is called its
characteristic function.*

The Fourier Transform of a convolution is the product
of the Fourier Transforms.

(Gweb-41)

Hence the distribution of y can be found by inverting
the Fourier Transform. This is easily extended to n inde-
pendent variables—we simply get more terms in the
product

G = G1G2G3…..Gn (Gweb-42)

Examples 

(1) The sum of n normal independent random variables
is a normal random variable:

x = x 1 + x 2 + … + xn (Gweb-43)

(Gweb-44)

where

(Gweb-45)

The sum of n statistically independent random vari-
ables is normal if and only if each of the variables is
normal.

(2) The binomial, Poisson and Cauchy distributions also
“reproduce themselves” under addition of indepen-
dent variates:
 If 

(Gweb-46)

Then

(Gweb-47)

If

(Gweb-48)

Then

(Gweb-49)

If

(Gweb-50)

Then

(Gweb-51)

(3) If we add an arbitrary random variable, x, to a uni-
formly distributed random variable, y, the sum, z = x
+ y yields the moving average of x, assuming x and y
are independent. Let

(Gweb-52)

Then

(Gweb-53)
In general, the probability distributions of sums x1 +
x2 + …, where the xi come from different distribution
types, can yield messy algebra.

Other Functions of Random Variables
We have already presented the general approach to

finding the probability distributions of functions of ran-
dom variables other than sums. We have emphasized
sums because they are important, particularly since we
have indicated that most error combination problems can
be reduced to sums, and also because they are tractable.
In a few cases, analytical results can be obtained for other
functions, as the following examples show.

To find the distribution of a product of two indepen-
dent random variables, let the variables be x and y, with
joint density f(x,y) = p(x)q(y) since they are independent.
We want to find the density, w(z), of z = xy. We have 

* Characteristic functions or Fourier Transforms are ubiquitous
in probability theory and statistics. In fact it has been said that
knowledge of statistics, like Electrical Engineering, reduces
to a knowledge of the Fourier Transform.
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(Gweb-54)

To find the distribution of a quotient of two independent
random variables, with x, y, p(x), q(y) as above, and with
z = x/y and the density of z being w(z), we have: 

(Gweb-55)

For p and q normal, W reduces to a Cauchy distribution.
Once we have the probability distribution of the out-

put (i.e., the system performance), we are in a position to
estimate the probability that the system error will lie
within the required bounds. The generation of this prob-
ability cannot be accomplished analytically, except for
some special cases, such as independent, identically dis-
tributed ei, with the pi given by some of the standard
types. It will in general require the use of a Monte Carlo
simulation plus some insight to ensure that the basic
problem is well defined. This can be time consuming.
Also, often the input data (e.g., the pi) are not particularly
well known, and it might not make sense to expend tre-
mendous amounts of computational effort analyzing
their consequences. For these reasons, it is often of inter-
est to find simplified ways of assessing the system
performance. It turns out that the moments of e can be
calculated quite simply in many situations as discussed
in the next section.

G.3  Expectations and Moments

It is often convenient to find a few numbers which
summarize the key features of a probability distribution.
For example, consider the following density functions.
In Fig. Gweb-8(A), the density is centered about the ori-
gin and is fairly spread out. This indicates that “on
average” readings of this variable will give zero, but that
there will be a lot of scatter. In Fig. Gweb-8(B), we also
have a variable centered about the origin, but in this case
there will be much less scatter. In Fig. Gweb-8(C), the
density is centered about a non-zero value—i.e., on aver-
age, we expect these measurements to give a reading
displaced from zero. In Fig. Gweb-8(D), the probability
density is “skewed”—there is more scatter for positive
than for negative values. The basic point is that the
behavior of the random variable can be summarized via
a few general features of the density—i.e., measures of
location, scatter and symmetry. Invoking the analogy of
the mass moments of a rigid body, these features are usu-
ally quantified by taking the “moments” of the density
function.

We start with some definitions. The expectation of a
function f of a random variable x with probability density
p(x) is defined to be: 

(Gweb-56)

The nth moment of the probability density p(x) is then de-
fined as 

(Gweb-57)

The following rules for expectations are easily
established:

E(c) = c (Gweb-58)
E(cf) = cE(f) (Gweb-59)

E(f1 + f2) = E(f1) + E(f2) (Gweb-60)

If 

f1(x) ≤ f2(x) (Gweb-61)

for all x then,

E(f1) ≤ E(f2) (Gweb-62)

|(E(f(x))| ≤ E(|f(x)|) (Gweb-63)
These results are completely independent of the proba-
bility distributions of the random variables.

The first moment, μ, given by

(Gweb-64)

corresponds to the “center of mass” of the probability
density. It is called the mean or  expected value of the
random variable, x. The second moment is called the
variance 

(Gweb-65)

The variance is the square of the standard deviation, σ.
The variance corresponds to the moment of inertia of p,
and the standard deviation to the radius of gyration. They
give a measure of how spread out p is, and hence how
scattered the observations of the random variable, x, will
be. Specifications of error bounds are often given in
terms of standard deviations, i.e., “n times the standard
deviation should not exceed a certain value,” where n is
typically 1, 2 or 3. Implicit in such a specification is a
probability figure. For a given density, p, the probability

( ) ( ) ( ) 1/
∞

−∞
= ∫w z p x q z x dx

x

( ) ( ) ( )∞

−∞
= ∫W z p yz q y y dy

( ) ( ) ( )≡⎡ ⎤⎣ ⎦ ∫E f x f x p x dx

(A) Large Scatter (B) Small Scatter

(C) Non-zero Average

(D) Asy

(D) Asymmetric

Fig. Gweb-8. Qualitative Features of Distributions.

( ) ⎡ ⎤≡ ⎣ ⎦
n

nm x E x

( )μ ≡ ∫ xp x dx

( ) ( ) ( )2μ≡ −∫Var x x p x dx

Table Gweb-1 , Fig. Gweb-8, Eq. Gweb-65



WG/8 Appendix G G.3

©2011 Microcosm Inc.

that a measurement lies within n standard deviations of
the mean is well defined. For example, for a normal dis-
tribution, these values are 68.3%, 95.5%, and 99.7%
respectively as given in Table 7-3 in Sec. 7.2.2.2 in
OCDM by Wertz [2009]. We discuss later the fact that
these probabilities will change if a different distribution
is used.

 We now return to the problem of characterizing the
probability distribution of the system error, given those
of the components. We can use the above rules to calcu-
late some moments of sums:

(Gweb-66)

Hence,

(Gweb-67)

If the xi are independent, the covariances are zero, and
we have

Var(Σ (xi)) = Σ (Var(xi)) (Gweb-68)

Taking square roots, we have 

(Gweb-69)

If we have perfect correlation, the standard deviations
sum: 

(Gweb-70)
Hence 

(Gweb-71)
Similar analyses can be carried out for more variables.

Hence, if we know the means and standard deviations (or
variances) of our inputs, it is easy to calculate the mean
and standard deviation of the output, particularly if the
inputs are either independent or perfectly correlated.

When the variables are uncorrelated, the system stan-
dard deviation is the square root of the sum of the
squares, called the root sum square or RSS, of the indi-
vidual standard deviations. When the variables are
correlated, the system error starts to take on more of the
appearance of a sum of the errors of the input variables.
The interpretation is that the statistical “smoothing” no
longer takes place, and the variables add algebraically.
Between these two extremes lie systems with partial cor-
relations. The results also lie in between, and the algebra
becomes messier.

If the output is a weighted sum of the individual
inputs, we can perform a similar analysis. For uncorre-
lated inputs, we get a weighted sum of squares for the
variance, and for perfect correlation, we get a weighted
sum.

Note that in this case we can always rescale the inputs
so that the weights are all equal to one—i.e., the weight-
ings really introduce no new concepts or complications.    

These results form the basis for some powerful ideas in proba-
bility theory and its applications:

(1)   Law of Large Numbers 
Take the average of a large number of samples, 

μn = (x1 + x2 + … + xn)/n (Gweb-72)

then 
Var(μn) = Var(x)/n (Gweb-73)

Thus, the variance of the sample means is (1/n) times the
variance of the population. By taking large enough samples
we can cluster as close to the mean as desired. However,
there are some bounds on “how close”. For example,
Chebychev’s inequality says that the probability that we lie
within of the mean is greater than 1 – 1/c2, for any
c. This idea underlies a number of filtering approaches.

(2)  Central Limit Theorem 
If the xi are independent and identically distributed, each

with mean μ, and variance σ2, then 

(Gweb-74)

is normally distributed as n → ∞ regardless of the distri-
butions of the xi. This is used, for example, to justify the
use of normal distributions in the theory of errors. The ba-
sic idea is that errors of measurement in most physical sys-
tems are due to a large number of small influences, so that
one can argue that their combination is normally distribut-
ed. Experimentally, this is borne out in a wide variety of
situations. It is somewhat of a miracle, because the normal
distribution also happens to be extremely convenient
mathematically. A very large portion of all that has been
written on statistics assumes that samples are drawn from
normally distributed populations.

(3)   Stable Distributions 
We have already noted that the binomial, Cauchy, Pois-

son and normal distributions are self reproducing under
summation (and hence averaging)—i.e., sums of such
variates are also so distributed. This concept can be gener-
alized to that of a stable distribution.

Let x, x1, ….., xn be independent identically distributed
random variables with density p(xi). Let 

(Gweb-75)

( )

( ) ( )2 2 2
>

⎡ ⎤ =⎣ ⎦
⎡ ⎤ = +⎣ ⎦

∑ ∑
∑ ∑ ∑∑

i i

i i i j
i j

E x E x

E x Ex E x x

( )( ) ( )2
>

⎡ ⎤ = +⎣ ⎦∑ ∑ ∑∑i i i j
i j

Var x Var x Cov x x

1 2 1 2

2 2 2σ σ σ σ+ = + + +K K
nx x x x x n

( ) ( ) ( )
( )

1 2 1 2 1 2
22 2

1 2 1 2 1 2

2

2

σ σ

σ σ σ σ σ σ

+ = + +

= + + = +

Var x x Var x Var x

1 2 1 2

1 2(for 1, this becomes )

σ σ σ

σ σ
+ = +

= − −

x x x x

r

2σc n

( )1 2
2/ σ= + +Kz x x x nn n 1 2≡ + +Ks x x xn n

Table Gweb-1 , Fig. Gweb-8 , Eq. Gweb-75



G.3 Expectations and Moments WG/9

©2011 Microcosm Inc.

The density p(x) is stable if there exist constants cn > 0 and
γn (for all n ≥ 2) such that sn has the same density as cnx +
γn. If γn = 0, p(x) is called strictly stable.

For the normal distribution, cn= n1/2. For the Cauchy, cn
= n. One can show [Feller, 1957, 1966]: that cn can only be
of the form 

n1/α,   0 < α ≤ 2 (Gweb-76)
where α = 1 for Cauchy, 2 for Normal. The distribution

(Gweb-77)

is stable with α = 1/2. The stable densities with α < 2 do not
have variances, i.e., their second moments are unbounded.

(4)  Computing Higher Moments 
The calculation of the higher moments of sums of inde-

pendent random variables is usually accomplished using
the characteristic function. The log of a characteristic func-
tion is easy to differentiate. We define the nth cumulant of
a random variable, x, as

(Gweb-78)

The cumulants of independent random variables are addi-
tive, i.e., 

Kr[x1 + x2 + … + xn] = Kr[x1] + Kr[x2] + … + Kr[xn]
(Gweb-79)

Even if the Fourier Transform of the sum cannot be invert-
ed, we can evaluate the cumulants and express the mo-
ments in terms of them. In fact, the first three moments
about the mean equal the first three cumulants. This also

shows that the first three moments are additive for inde-
pendent summands.

If we take the Laplace transform of a density function
(analogously to taking the Fourier transform to form the
characteristic function) the result is called the moment
generating function (MGF). The reason for this is that the
moments turn out to be the coefficients in the Taylor series
for the MGF. Let G(s) be the MGF of the probability den-
sity p(x). Then

(Gweb-80)

Now note that 

(Gweb-81)

Hence 

(Gweb-82)

Finally note that 

(Gweb-83)

Two and Three Dimensional Target Spaces
We have seen that if the target location must be spec-

ified as a 2 or 3 dimensional vector, we can readily
calculate the standard deviation of the error in terms of
the standard deviations of the 1-dimensional compo-
nents. We now discuss the significance of the fact that
this system error will have a different probability density
from those of the components. To illustrate the ideas
involved, we shall present the simplest possible case—a
bivariate normal distribution—and then briefly indicate
what happens in general.

Suppose the target is nominally at (0,0) in the (x, y)
plane, and that the x and y error densities are given by
normal densities:

(Gweb-84)

(Gweb-85)

Suppose, further, that these are independent, and that σx
= σy = σ. Then the probability of making a measurement
in an element of area, dxdy is given by

(Gweb-86)

We can convert to polar coordinates (r, θ) and integrate
out the θ-dependence, leaving the distribution of radial
errors:

(Gweb-87)

This is called a circular normal or Rayleigh probabil-
ity density. It is usually tabulated in terms of the circular
error probability, or CEP.

Assume that the cumulative distribution function, P{r
≤ R} is given by

(Gweb-88)

The CEP is defined as the R such that P(R) = 0.5. Hence

(Gweb-89)
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 We have also seen that the standard deviation of r is 

 (Gweb-90)

Let us now calculate the probability that

(Gweb-91)

 We have

(Gweb-92)

Similarly the “2σ” probability is 1 – e4 = .9817, and the
“3σ” probability is 0.9998. Numerical values for 1, 2, 3,
and 4σ variations in 1, 2, and 3-dimensional problems
are given in Table 7-3 in Sec. 7.2.2 in OCDM by Wertz
[2009]. The large print is that the probabilities associated
with n-sigma errors vary with dimension and with the
probability distributions. Note that in two dimensions
there is an extra “r” factor in the area element. For small
r we enclose fewer points, while at large r we enclose
more. In three dimensions we get a similar effect, except
that now the extra factor involves r2. The main message
of this discussion is that the probabilistic significance
of n-sigma error bounds changes with the dimension-
ality of the problem and with the assumed probability
distributions. 

Adding Errors of Different Frequencies
Any measurement on a system can be regarded as

drawing a sample from an ensemble of systems, a popu-
lation with the statistical properties we have derived. Up
to now we have not said anything about how these sam-
ples are drawn. We now consider to what extent the
sampling procedure can affect the errors. In an actual
system, this sampling procedure is realized as a time
series of measurements. Apart from providing us with a
string of readings (and hence the opportunity to do statis-
tics) a time series has extra structure. Readings taken
close together in time can be more closely related than
those taken far apart.  As a result, the probability distri-
butions of the output will depend on the time scales used
in taking the readings. Since time domain and frequency
domain behavior can be related through the Fourier
transform, the spectral structure of the errors can influ-
ence the way in which we combine them.

From a systems engineering point of view, one of our
goals in error budgeting is to eliminate excessive conser-
vatism. We don’t want to impose unnecessarily strict
requirements on the subsystems, since this drives up
cost. The “extra degree of freedom” obtained by consid-
ering frequency can sometimes be exploited to reduce
conservatism. The basic idea is that at any given time
only a limited fraction of the total error variance may
actually be accessible. This is illustrated schematically in
Fig. Gweb-9. We may think of the shaded area (the short
term available error variation) as wandering around the
total area. At small time scales, our error variance is
defined by the shaded area. At long time scales, we can
observe errors anywhere in the larger, unshaded area. For
this to make sense, there must be two time scales in the
problem—a short time scale associated with activity
within the shaded area, and a longer one associated with
the motion of the shaded area. We also require that the
motion of the shaded area be classified as “noise”—i.e.,
not as a deterministic motion which we should have
accounted for in the measurement process.

For a simple illustration, consider adding two pure
sinusoids.  If the frequencies are far apart, the sum will
look like the curve in Fig. Gweb-10.  

2σ σ=r

2σ σ≤ =rr

( ) 12 1 0.6321σ −= − =P e

Fig. Gweb-9. The Amount of Variation Available to a System
in the Short Term (Shaded Region) May (1) be Smaller than
the Total Amount Available in the Long Term (Unshaded Re-
gion), and (2) May Move Around with Time.

Amount of
Variance

Available at t1

Time = t1

Total 
Variance

Time = t2

Amount of
Variance

Available at t2

Fig. Gweb-10. Sinusoidal Example of Short Term Variation (Shaded) vs. Long
Term Variation (Unshaded).

Unshaded Shaded
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Measuring over a long time scale, we’ll pick up the
total variation. Over a short time scale we’ll get a smaller
“local” variation, plus a slowly varying bias. However, if
the frequencies are close together, we’ll get a beat pattern
as shown in Fig. Gweb-11. In principle, if the frequen-
cies were very steady (in which case they wouldn’t be
“noise”) we could take advantage of the small ampli-
tudes at the nodes of the beats. In practice, there is a band
of frequencies, and the beats don’t occur. In both these
examples, the total sample space available is large
(essentially the total variation of the combined signal). In
the first case, however, because of the spread in frequen-
cies, the perceived variance can be less than the total
variance if an appropriate time scale is used.

 It is possible to have “random analogs” to the sinu-
soids used in the discussion above—an example would
be integrated white noise as it appears on a gyro angle
output. Here the bias can shift slowly with time (and can
be tracked and eliminated from the error budget), but it is
not deterministic.*

Stochastic Processes
If we consider our system to evolve in time but that it

is influenced by some random effects, then the state of
the system will be given by a time series of random vari-
ables. Also, the series of random disturbances, and the
measurements with random errors that we use to describe
our system will also yield time series of random vari-
ables. Such series are called random processes. We will
show how the frequency content of such processes can
be measured, and that processes with various frequency
contents can be constructed. We will then give an analog
of our sinusoidal example. 

A stochastic process (stochastic means random) is a
family {Xt: t ε T} of random variables. For our purposes,
the index set, T, will either be a continuous or a discrete
time variable. The Xt will typically represent the state of
our system. A random process is strongly stationary if its
probability distributions are invariant under time shifts.
It is weakly stationary if the first two moments (i.e., the
means and covariances) are invariant under time shifts. 

For a discrete time variable, a stationary random pro-
cess is easy to visualize. For each time step, ti, we draw
an X from its probability distribution, p(X), and plot it as
shown in Fig. Gweb-12.

If we observe the process for a long time, and count
the number of times the ordinate lies between X and X +
dX for various X we will find that the probabilities of the
various X values match p(X).

Next, we want to see how a frequency spectrum can
be associated with such a process. Start in the time
domain, and introduce a measure of how much the X’s
are correlated with their neighbors. A high positive cor-
relation would imply that X does not change rapidly with
time. The autocorrelation function of a univariate pro-
cess is defined as 

(Gweb-93)

It measures the correlation between readings taken a time
interval t apart. Given two processes, x(t) and y(t), their
cross-correlation is 

(Gweb-94)

We now look at how this temporal behavior translates
into the frequency domain. The power spectral density of
a process x(t) is the Fourier Transform of its autocorrela-
tion:

(Gweb-95)

(Gweb-96)

The cross-power spectrum, or coherence, of two pro-
cesses, x(t) and y(t) is

(Gweb-97)

(Gweb-98)

As the name implies, this measures the power in our sig-
nal as a function of frequency, and hence indicates its fre-
quency content.

Fig. Gweb-11. Beat Pattern in Mixture of Nearby Frequencies.

* There are also a number of deterministic situations in which
a slowly varying bias might occur. Typical examples include
disturbances that are periodic with the spacecraft orbit, such
as thermal or lighting effects.

Fig. Gweb-12.  A Discrete Time Stationary Random Process,
x = x(t). See text for definitions.
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For example, a theoretical model of white noise, W(t),
is given by

 Sww(ω) = 1,  Rww(t) = δ (t) (Gweb-99)

There is no correlation over time. For Gaussian white
noise, the probability density of each W(t) is Gaussian.*
The total power in white noise is 

(Gweb-100)

Any real physical system would attenuate the high fre-
quencies. Modifications of white noise by filtering are
termed colored noise.

As a second example, a random walk, also called
Brownian motion is integrated white noise. Many physi-
cal processes can be modeled as linear systems driven by
white noise. Autoregressive models are an example of
this. They have the form

(Gweb-101)

Moving average models are another example. They have
the form

 (Gweb-102)

These can be combined to yield moving average autore-
gressive models: 

 (Gweb-103)

Similar definitions involving stochastic differential
equations apply in the continuous case. It should be not-
ed that the “stochastic calculus” involved in the continu-
ous case involves some subtleties. See, for example,
Karatzas and Shreve [1997], and Oksendal [1998]. 

Since many stochastic processes can be built up by
passing white noise through various kinds of filters, the
inverse problem suggests itself—finding a filter which
will reduce a given stochastic process to white noise.
Such filters are commonly used in estimation the-
ory—once we get down to white noise, we have
essentially squeezed all the information out of the
process.

We now return to the “stochastic analog” of the sinu-
soidal example given previously. We first need to
generate a pair of stochastic processes which have very
different frequencies, and then discuss how they can be
combined. In a real situation, the stochastic processes
would be provided by nature. We shall use a pair of
mathematically very simple autoregressive processes.
(See Box and Jenkins [1970].) Let

  (Gweb-104)

and

  (Gweb-105)

be two stationary processes. It can be shown that this
requires |a| < 1. u and v are supposed to both be white
noise with variance σ2. As shown in Fig. Gweb-13, heu-
ristically, x tries to match itself, and hence is relatively
smooth, with slow meanderings. y reverses sign at each
time step, and hence has a much higher frequency
appearance. This is confirmed by calculating the power
spectra (the Fourier transforms of the autocovariance
functions). See Fig. Gweb-14.      

* In the noise literature, “Normal” distributions are usually
called “Gaussian”.
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1−= +i i ix ax u

(A)

(B)

Fig. Gweb-13. (A) Realization of xi = axi–1 +ui
(0<a<1). (B) Realization of yi = ayi–1 +vi  (0<a<1).

(A)

(B)

Fig. Gweb-14.   (A) Power Spectra of xi = axi–1
+ui. (B) Power spectra yi = ayi–1 +vi .

1−= − +i i iy ay v
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If we sum x and y we obtain a process with ostensibly
the sum of their variances. This is most easily seen by
transforming these autoregressive processes into moving
average processes. We have 

(1 – aB)xi = ui (Gweb-106)

where B is the back-shift operator, 

  (Gweb-107)

Hence

 xi = ui (1 + aB + [aB]2 + ….) (Gweb-108)

and 

Var(xi) = Var(u)(1 + a2+ a4 + …) 
= σ2/(1 – a2) (Gweb-109)

Similarly, 

yi = vi(1 – aB + [aB]2 – …) (Gweb-110)

and 

Var (yi) = Var (v)(1 + a2 + a4 + …)
= σ2/(1 – a2) (Gweb-111)

If we call 

z = x + y (Gweb-112)

we have 

zi = ui(1 + aB + [aB]2 + ...) 
+ vi(1 – aB + [aB]2 –…) (Gweb-113)

and 

Var(zi) = Var (u)/(1 – a2) + Var (v)
/(1 – a2) = σxi2 + σyi2 (Gweb-114)

This corresponds to the unshaded area alluded to in
the introduction to this section. To see quantitatively that
the short term variance is lower we can proceed in vari-
ous ways. First, we can simply add the two plots,
obtaining the results shown in Fig. Gweb-15. 

We essentially get y modulated by x. For short time pe-
riods, the local variation is predominantly that of y. Alter-
natively, we can note that the spectrum at high frequencies
is essentially that of y as shown in Fig. Gweb-16. 

This again implies that the short term fluctuations are
mainly those due to y. Finally, we can look at the auto-
correlation function, as seen in Fig. Gweb-17, and note
that for short time differences, deviations of the autocor-
relation function from unity (i.e., “smoothness”) are due
to y: 

In summary, the basic point is that we can “achieve”
 even though the net variance of the system is ,

over time scales short compared with the main frequency
content of “x”. Hence, in coming up with an error budget
(for short time scales) we can reduce the variance from
the “nominal value”.

For example, if we return to Table 5-18 in OCDM by
Wertz [2009], we would expect errors (2) and (7) to vary
much more slowly than the others. On the shorter time
scale of the other errors we would thus expect to be able
to estimate these “biases” and correspondingly reduce
the system error. The effect of time scale on variance can
be conveniently summarized in terms of the Allen
Variance σA(t), which gives the variance in output
measurements when those measurements are averaged
over a time scale, t. If the output is a sum of inputs with
different spectra, these can be identified in a plot of
σA(t). At different time scales, different spectra become
dominant. There is an optimum time scale that involves
a minimum variance. From the standpoint of error
budgeting, we need to identify an appropriate frequency
band. This, in turn will yield the corresponding output
variance.

G.4  Example: Minimizing Cost

Up to this point, we have not discussed how the error
budget is distributed among the various components. We
have only shown how a given set of errors contributed by
the components can be added. Normally the flowdown of
requirements to the components is accomplished by sim-

Fig. Gweb-15. Sum of the Two Processes xi = axi –1 + ui  and
yi = –ayi –1 + Vi

1−≡i iBx k

Time

Fig. Gweb-16. Spectrum of Combined Process.

Fig. Gweb-17. Autocorrelation Function for Combined Pro-
cess.

Frequency

2σ y
2 2σ σ+x y
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ply spreading the pain as evenly as possible. In this
section we briefly describe how the budget can be opti-
mized in terms of cost.

An error budget should be formulated with an eye
toward the sensitivity of the cost of each component to its
accuracy requirement. However, cost figures are hard to
come by. If an item can be bought off the shelf, there
should be no problem. If a new item has to be developed,
the risk and cost go up. The more challenging the
requirement, the more surprises can arise which tend to
add to the cost. 

For costing analyses, these distributions are often
approximated by triangular distributions as shown in
Fig. Gweb-18. As the annotations in the figure indicate,
the shape of the triangle will correspond to the amount of
risk, and the location to the expected cost. As the require-
ments on a given object are made more stringent, its
triangle will start looking more risky. Fig. Gweb-19
shows a hypothetical family of distributions for a given
type of instrument, as the error bounds are tightened.
Note that the highest possible cost grows much more rap-
idly than the “expected cost”, and the corresponding
distributions become more and more skewed. The idea is
to come up with a family of such curves for each of the
components.  Having compiled all this information, we
now must come up with our error budget—i.e., we must
apportion out the total allowable system error to the var-
ious components in such a way  as to minimize the cost.
Conceptually, we want to superimpose curves of con-
stant system cost onto a plot of the error budget
constraint (Fig. Gweb-20), and find the lowest cost con-
sistent with the constraint, i.e., the point of tangency.
From this we can read off the optimal error budget pro-
cess as follows:

1. For each component, we can translate the family
of cost curves into a curve of accuracy vs cost.
We then sum these to obtain curves of system
cost. The summation procedure will require
care, since it should account for correlations,
and, perhaps more important, account for risk.
This amounts to deciding which curves to add. A
conservative approach would be to use the upper
bound curves. This is usually too conservative.
Note, for example, that if we push the perfor-
mance of one item, we may be able to back off
on another—i.e., the costs tend to be correlated.
We have seen that it is simple to add mean val-
ues, and standard deviations. Hence, we can find
“mean plus n-sigma” curves for the system cost.

2.  Finding the error budget constraint curve, i.e.,
combinations of component errors which are
compatible with the allowed system error, is
straightforward assuming we characterize the
errors via their standard deviations. For exam-
ple, if we have n components, then the surface of
all combinations of sigmas which will RSS to a
given system sigma is an n-sphere. For example,
in 2-dimensions we have a circle. This can be

compared with the more conservative sum,
given by the straight line in Fig. Gweb-21. Other
correlation values will give intermediate curves.
These can now be overlaid on the cost curves to
find the optimum vector of sigmas to create the
error budget.          

Fig. Gweb-18. Idealized Probability Density Functions for
Low and High Risk Items.

Fig. Gweb-19. Family of Probability Density Functions Pa-
rametrized Accordingly to Risk (or Performance).

Fig. Gweb-20. Curves of Constant System Cost as a Func-
tion of Component Performance Requirements—and Hence
Risk—as Derived from the Cost-Risk Curves in Fig. Gweb-19.
Superimposed on a Curve of the Error Budget Constraint (Com-
bination of Component Performances which Yield a Given Sys-
tem Performance). The optimal error budget can be read off from
this plot.

Triangle for a given object joins
lower bound on cost estimates, 
most likely, and upper bound

Low risk object

High risk object
A long tail (high upper 
bound) signifies high risk

Cost

Increasing Performance,
Increasing Risk

Cost

Curves of Constant
System Cost

Sigma 1

Sigma 2

Optimal Error
Budget

Budgetary 
Constraint

Table Gweb-1 , Fig. Gweb-20, Eq. Gweb-114
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In a cost setting it is common to have to provide a
probability distribution of system cost—i.e., not simply
an expected value or a mean plus n-sigma. Such distribu-
tions are usually generated using Monte Carlo
techniques based on the triangular distributions
described above. The cost portion of the error budgeting
problem described in this example can also be handled
directly via Monte Carlo methods. 

It should be noted that error budgets are not typically
developed as outlined in this example. The error is often
uniformly distributed among the components, or else is
allocated based on the known capabilities of existing
components. We will generally have some awareness of
the state of the art, and will avoid setting unreasonable
and,  hence, expensive requirements. The error budget-
ing process usually involves some iterations and
negotiation of “terrible injustices” [Williams, 1992]. 

References
Feller, W. 1957, 1976. An Introduction to Probability

Theory and its Applications. Vol. 1 (1957), Vol. 2
(1966), Wiley.

Meyer, P. L. 1972. Introductory Probability and Statisti-
cal Applications. Addison-Wesley.                                                                                              

Papoulis, A. 1965. Probability, Random Variables and
Stochastic Processes. McGraw-Hill. 

Parzen, E. 1960. Modern Probability Theory and its Ap-
plications. Wiley .

Kac, M. 1989. Statistical Independence in Probability,
Analysis and Number Theory. MAA.

Box, G. and G. Jenkins. 1970. Time Series Analysis.
Holden-Day. 

Karatzas, I. and S. Shreve. 1997. Brownian Motion and
Stochastic Calculus. Springer.

Oksendal, B. 1998. Stochastic Differential Equations.
Springer. 

Williams, Michael. 1992. “Requirements Definition.” In
Larson, Wiley J. and Wertz, James R. (eds.). Space
Mission Analysis and Design, 2nd ed. Dordrecht, The
Netherlands and Torrance, CA: Kluwer Academic
and Microcosm, Inc.

Wertz, James R. 2009. Orbit & Constellation Design and
Management: Spacecraft Orbit and Attitude Systems.
Hawthorne, CA: Microcosm Press.

Fig. Gweb-21. Curves of Constant System Error Budget
(Sum and RSS).

RSS

Sum

Sigma 1

Sigma 2

Table Gweb-1 , Fig. Gweb-21, Eq. Gweb-114


