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F.2.1.1 Definitions 

A matrix is a rectangular array of scalar entries known as the elements of the matrix. In this book, the 
scalars are assumed to be real or complex numbers. If all the elements of a matrix are real numbers, the 
matrix is a real matrix. The matrix 

 

    

A ≡

A11 A12 … A1n

A21 A22 " A2n

# # #
Am1 Am2 " Amn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

≡ Aij
⎡
⎣⎢

⎤
⎦⎥   (Fweb-1) 

has m rows and n columns, and is referred to as an m × n matrix or as a matrix of order m × n. The equation 
A = [Aij] should be read as, “A is the matrix whose elements are Aij.” The first subscript labels the rows of 
the matrix and the second labels the columns. 

Two matrices are equal if and only if they are of the same order and all of the corresponding elements 
are equal; i.e.,  

 A = B if and only if Aij = Bij; i = 1,...,m; j = 1,...,n (Fweb-2) 

An n × n matrix is called a square matrix and is usually referred to as being of order n rather than n × n.  
The transpose of a matrix is the matrix resulting from interchanging rows and columns. The transpose of 

A is denoted by AT, and its elements are given by  

 AT ≡ [(AT)ij] ≡ [Aji]  (Fweb-3) 

As an example, the transpose of the matrix in Eq. (Fweb-1) is 

     

AT ≡

A11 A21 … Am1

A12 A22 " Am2

# # #
A1n A2n " Amn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

It is clear that the transpose of an m × n matrix is an n × m matrix, and that the transpose of a square matrix 
is square. The transpose of the transpose of a matrix is equal to the original matrix: 
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AT( )T
= A  (Fweb-4) 

The adjoint of a matrix, denoted by A†, is the matrix whose elements are the complex conjugates of the 
elements of the transpose of the given matrix*, i.e.,  

 A† ≡ [(A†)ij] ≡ [A*ji] (Fweb-5) 

The adjoint of the adjoint of a matrix is equal to the original matrix:  

 (A†)† = A (Fweb-6) 

The adjoint and the transpose of a real matrix are identical. 
The main diagonal of a square matrix is the set of elements with row and column indices equal. A 

diagonal matrix is a square matrix with nonzero elements only on the main diagonal, e.g., 

 

   

D =

D11 0 … 0
0 D22 " 0
# # #
0 0 " Dnn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (Fweb-7)  

The identity matrix of a given order is the diagonal matrix with all the elements on the main diagonal 
equal to unity. It is denoted by 1, or by 1n to indicate the order explicitly. 

A matrix with only one column is a column matrix. An n × 1 column matrix can be identified with a 
vector in n-dimensional space, and we shall indicate such matrices by boldface letters, as used for vectors.† 
A matrix with only one row is a row matrix; its transpose is a column matrix, so we denote it as the 
transpose of a vector. The elements of a row or column matrix will be written with only one subscript; for 
example, 

 

    

B =

B1

B2

#
Bn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, CT ≡ C1, C2 ," , Cm⎡⎣ ⎤⎦  (Fweb-8) 

A set of m n × 1 vectors B(i), i = 1,2,...,m, is linearly independent if and only if the only coefficients 
ai, i = 1,2,...,m, satisfying the equation 

 
    

aiB
( i) =

i=1

m

∑ a1B
(1) + a2B

(2) +"+ amB(m) = 0  (Fweb-9)  

are ai = 0, i = 1,2,...,m. There can never be more than n linearly independent n × 1 vectors.  

F.2.1.2 Matrix Algebra 
Multiplication of a matrix by a scalar is accomplished by multiplying each element of the matrix by 

the scalar, i.e., 

                                                 
* The word adjoint is sometimes used for a different matrix in the literature. 
† Strictly speaking, a vector is an abstract mathematical object, and the column matrix is a concrete realization of it, the matrix 

elements being the components of the vector in some coordinate system. 
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 sA ≡ [sAij]  (Fweb-10) 

Addition of two matrices is possible only if the matrices have the same order. The elements of the matrix 
sum are the sums of the corresponding elements of the matrix addends, i.e.,  

 A + B ≡ [Aij + Bij] (Fweb-11) 

Matrix subtraction follows from the above two rules by  

 A − B ≡ A + (−1)B = [Aij − Bij]  (Fweb-12) 

Multiplication of two matrices is possible only if the number of columns of the matrix on the left side of the 
product is equal to the number of rows of the matrix on the right. If A is of order 1 × m and B is m × n, the 
product AB is the l × n matrix given by  

 
  
AB ≡ AB( )ij⎡

⎣
⎤
⎦ ≡ Aik Bkj

k=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥  (Fweb-13)  

Matrix multiplication is associative  

 A(BC) = (AB)C (Fweb-14) 

  
and distributive over addition  

 A(B + C)= AB + AC (Fweb-15) 

 
but is not commutative, in general,  

 AB ≠ BA (Fweb-16) 

In fact, the products AB and BA are both defined and have the same order only if A and B are square 
matrices, and even in this case the products are not necessarily equal. For the square matrices 

  
A =

1 2
3 4
⎡

⎣
⎢

⎤

⎦
⎥ and B =

5 6
7 8
⎡

⎣
⎢

⎤

⎦
⎥ , 

for example, we have 

  
AB =

19 22
43 50
⎡

⎣
⎢

⎤

⎦
⎥ ≠ BA =

23 34
31 46
⎡

⎣
⎢

⎤

⎦
⎥  

If AB = BA, for two square matrices, A and B, we say that A and B commute. One interesting case is 
diagonal matrices, which always commute. 

The adjoint (or transpose) of the product of two matrices is equal to the product of the adjoints (or 
transposes) of the two matrices taken in the opposite order:  

 (AB) † = B†A† (Fweb-17) 

 

 (AB)T = BTAT (Fweb-18) 

This result easily generalizes to products of more than two matrices.  
Multiplying any matrix by the identity matrix of the appropriate order, on the left or the right, yields a 

product equal to the original matrix. Thus, if B is of order m × n, 

 1mB = B1n = B (Fweb-19)  
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The product of an n × m matrix and an m-dimensional vector (an m × 1 matrix) is an n-dimensional 
vector; thus, 

 Y ≡ AX ≡ Aij X j
j=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥  (Fweb-20)  

A similar result holds if a row matrix is multiplied on the right by a matrix, 

 YT = XTAT = Aji X j
j=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥  (Fweb-21) 

An important special case of the above is the multiplication of a 1 × n row matrix (on the left) by an 
n × 1 column matrix (on the right) which yields a scalar, 

 s ≡ YTX ≡ X jYj
i=1

n

∑  (Fweb-22)  

For real vectors, this scalar is the inner product, or dot product, or scalar product of the vectors X and Y. 
For vectors with complex components, it is more convenient to define the inner product by using the adjoint 
of the left-hand vector rather than the transpose. Thus, in general, 

 Y ⋅X ≡ Y  X = Yi
∗

i=1

n

∑ Xi  (Fweb-23)  

Note that, in general, 

 Y ⋅X = X ⋅Y( )*  (Fweb-24) 

This definition reduces to the usual definition for real vectors, for which the inner product is independent of 
the order in which the vectors appear. Two vectors are orthogonal if their inner product is zero. The inner 
product of a vector with itself  

 X ⋅X = Xi
∗Xi = Xi

i=1

n

∑
i=1

n

∑ 2
 (Fweb-25)  

is never negative and is zero if and only if all the elements of X are zero, i.e., if X = 0. This product will be 
denoted by X2 and its positive square root by |X| or by X, if no confusion results. The scalar |X| is called the 
norm or magnitude of the vector, X, and can be thought of as the length of the vector. Thus, with our 
definition of the inner product,  

 |X| = 0 if and only if X = 0 (Fweb-26) 

which would not be true if we defined the inner product using the transpose rather than the adjoint, because 
the square of a complex number generally is not positive. 

If we multiply an n × 1 row matrix (on the left) by a 1 × m matrix (on the right), we obtain an n x m 
matrix. This leads to the definition of the outer product of two vectors 

 XY† ≡ [(XY†)ij] ≡ [XiYj
*] (Fweb-27) 

If the vectors are real, the adjoint of Y is the transpose of Y, and the ijth element of the outer product is XiYj. 
Matrix division can be defined in terms of matrix inverses, which are discussed in Section F.2.1.4.  
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F.2.1.3 Trace, Determinant, and Rank 
Two useful scalar quantities, the trace and the determinant, can be defined for any square matrix. The 

rank of a matrix is defined for any matrix. 
The trace of an n × n matrix is the sum of the diagonal elements of the matrix 

 trA ≡ Aii
i=1

n

∑  (Fweb-28)  

The trace of a product of square matrices is unchanged by a cyclic permutation of the order of the product  

 
  
tr ABC( )=

i=1

n

∑
j=1

n

∑ Aij BjkCki
k=1

n

∑ = tr CAB( ) (Fweb-29)  

However, tr(ABC) ≠ tr(ACB), in general. 
The determinant of an n × n matrix is the complex number defined by 

 
   
det A ≡ Aij ≡ −1( )∑

p
A1p1

A2 p2
"Anpn

 (Fweb-30)  

where the set of numbers {p1,p2,...,pn} is a permutation, or rearrangement, of {1,2,...,n}. Any permutation 
can be achieved by a sequence of pairwise interchanges. A permutation is uniquely even or odd if the 
number of interchanges required is even or odd, respectively. The exponent p in Eq. (Fweb-30) is zero for 
even permutations and unity for odd ones. The sum is over all the n! distinct permutations of {1,2,...,n}. It is 
not difficult to show that Eq. (Fweb-30) is equivalent to 

 det A = −1( )i+ j
Aij Mij

j=1

n

∑  (Fweb-31)  

for any fixed i =1,2,...,n, where Mij is the minor of Aij, defined as the determinant of the (n – 1) × (n – 1) 
matrix formed by omitting the ith row and jth column from A. This form provides a convenient method for 
evaluating determinants by successive reduction to lower orders. For example, 

 

 

1 2 3
4 5 6
7 8 9

= 1×
5 6
8 9

− 2 ×
4 6
7 9

+ 3×
4 5
7 8

= 5× 9 − 8 × 6( )− 2 4 × 9 − 7 × 6( )+ 3 4 × 8 − 7 × 5( )= 0

 (Fweb-32)  

The determinant of the product of two square matrices is equal to the product of the determinants 

 det (AB) = (det A)(det B) (Fweb-33) 

The determinant of a scalar multiplied by an n × n matrix is given by 

 det(sA) = sndetA (Fweb-34) 

The determinants of a matrix and of its transpose are equal: 

 det AT = det A (Fweb-35) 

Thus, the determinant of the adjoint is 

 det A† = (det A)*  (Fweb-36) 
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The determinant of a matrix with all zeros on one side of the main diagonal is equal to the product of the 
diagonal elements. 

The rank of a matrix is the order of the largest square array in that matrix, formed by deleting rows and 
columns that has a nonvanishing determinant. Clearly, the rank of an m × n matrix cannot exceed the 
smaller of m and n. The matrices A, AT, A†, A†A, and AA† all have the same rank. 

F.2.1.4 Matrix Inverses and Solutions to Simultaneous Linear Equations 

Let A be an m × n matrix of rank k. An n × m matrix B is a left inverse of A if BA = 1n. An n × m matrix 
C is a right inverse of A if AC = 1m. There are four possible cases: k is less than both m and n, k = m = n, 
k = m < n, and k = n < m. If k is less than both m and n, then no left or right inverse of A exists.* If k = m = n, 
then A is nonsingular and has a unique inverse, A–1, which is both a left and a right inverse: 

 A–1A = AA–1 = 1      (k = m = n)  (Fweb-37) 

A nonsingular matrix is a square matrix with nonzero determinant; all other matrices are singular. If 
k = m < n, then A has no left inverse but an infinity of right inverses, one of which is given by 

 AR = A†(AA†)–1      (k = m < n)  (Fweb-38) 

If k = n < m, then A has no right inverse but an infinity of left inverses, one of which is 

 AL = (A†A)–1 A†      (k = n < m)  (Fweb-39) 

AL or AR is called the generalized inverse or pseudoinverse of A. 
Consider the set of m simultaneous linear equations in n unknowns; X1,X2,..., Xn; 

 AX = Y (Fweb-40) 

If k = m = n, then X = A–1 Y is the unique solution to the set of equations. It follows that a nonzero solution 
to AX = 0 is possible only if A is singular, i.e.,  

 AX = 0 for X ≠ 0, only if det A = 0 (Fweb-41) 

If k = m < n, there are more unknowns than equations, so there are an infinite number of solutions. The 
solution with the smallest norm, |X|, is 

 X = ARY (Fweb-42) 

If k = n < m, there are more equations than unknowns; therefore, no solution exists, in general. However, 
the vector X that comes closest to a solution, in the sense of minimizing | AX – Y|, is  

 X = ALY (Fweb-43) 

Note that although AAL ≠ 1m, it is possible that AALY = Y for the particular Y in Eq. (Fweb-40). In this case, 
Eq. (Fweb-40) has a unique solution given by Eq. (Fweb-43). 

It is easy to see that if A is nonsingular, then A–1 is nonsingular also and 

 (A–1) –1 = A (Fweb-44) 

Likewise, if A is nonsingular, then AT and A† are nonsingular and their inverses are given by 

 (AT)–1 = (A–1)T (Fweb-45) 

 (A†)–1 = (A–1)† (Fweb-46) 

 
                                                 
* It is possible to define a pseudoinverse for a general matrix, which in this case is neither a left nor a right inverse. In the other 

three cases, the pseudoinverse is identical with A–1, AR, and AL, respectively. The results on solutions of simultaneous linear 
equations can be generalized with this definition [Wiberg, 1971]. 
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If two matrices, A and B, are nonsingular, their product is nonsingular also; and the inverse of the product is 
the product of the inverses, taken in the opposite order: 

 (AB)–1 = B–1A–1 (Fweb-47) 

This result easily generalizes to products of more than two matrices. 
Various algorithms exist for calculating matrix inverses; several are described by Carnahan, et al., 

[1969] and by Forsythe and Moler [1967]. An example of a subroutine for this purpose is INVERT, 
described in Section 20.3.  

F.2.1.5 Special Types of Square Matrices, Matrix Transformations 
A symmetric matrix is a square matrix that is equal to its transpose: 

 AT = A,     Aij = Aji (Fweb-48) 

A skew-symmetric or antisymmetric matrix is equal to the negative of its transpose: 

 AT = –A,     Aij = –Aji (Fweb-49) 

Clearly, a skew-symmetric matrix must have zeros on its main diagonal. An example of a skew symmetric 
matrix is Ω in Section 16.1. A  Hermitian matrix is equal to its adjoint: 

 A† = A,     Aij = A*
ji (Fweb-50) 

A real symmetric matrix is a special case of a Hermitian matrix. An orthogonal matrix is a matrix whose 
transpose is equal to its inverse: 

 AT = A–1,      AAT = ATA = 1 (Fweb-51) 

A unitary matrix is a matrix whose adjoint is equal to its inverse: 

 A† = A–1,      AA† = A†A = 1 (Fweb-52) 

A real orthogonal matrix is a special case of a unitary matrix. The product of two unitary (or orthogonal) 
matrices is unitary (or orthogonal). This result generalizes to products of more than two matrices. A similar 
result generally does not hold for Hermitian or symmetric matrices. A normal matrix is a matrix that 
commutes with its adjoint 

A†A = AA† 

Thus, both Hermitian matrices and unitary matrices are special cases of normal matrices. 
By the rules for determinants of products and adjoints, it is easy to see that if A is unitary 

 |detA|2 = 1 (Fweb-53) 

Thus, detA is a complex number with absolute value unity. Similarly, if A is orthogonal,  

 (detA)2=1     detA= ±1 (Fweb-54) 

An orthogonal matrix with positive determinant is a proper orthogonal matrix; an orthogonal matrix is 
improper if its determinant is negative. 

Let X be an n-dimensional vector and let A be an n × n matrix. Then AX is another n-dimensional vector 
and can be thought of as the transformation of X by A. If X and Y are two vectors, the inner product of AX 
and AY is 

   
AX( )⋅ AY( )= AX( ) AY( )= X A AY  

If A is unitary,  

 AX( )⋅ AY( )= X ⋅Y  (Fweb-55) 
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The dot product is unchanged if both vectors are transformed by the same unitary matrix. This result with 
X = Y shows that the norm of a vector is unchanged, too, so the unitary matrix can be thought of as 
performing a rotation of the vector in n-dimensional space, thereby preserving its length. If the vectors are 
real, the rotations correspond to proper real orthogonal matrices. 

The transformations of a matrix are defined analogously to the transformations of a vector, but they 
involve multiplying the matrix on both the left and right sides, rather than only on the left side. Several 
kinds of transformations are defined. If B is nonsingular, then 

 AS = B–1AB (Fweb-56) 

is a similarity transformation on A. We say that AS is similar to A. A special case occurs if B is unitary. In 
this case we have a unitary transformation on A, 

 AU = B†AB (Fweb-57) 

A second special case occurs if B is orthogonal, in which case 

 AO = BTAB (Fweb-58) 

defines an orthogonal transformation on A. 
It follows directly from the invariance of the trace to cyclic permutations of the order of matrix 

products, Eq. (Fweb-28), that 

 trAS = trAU = trAO = trA (Fweb-59) 

Also, by the rules on determinants, 

 detAS = detAU = detAO = detA (Fweb-60) 

It is easy to see that 

 AU
 = B A B  (Fweb-61)  

and 

 AO
T = BT AT B  (Fweb-62)  

Thus, AU is Hermitian (or unitary) if A is Hermitian (or unitary), and AO is symmetric (or orthogonal) if 
A is symmetric (or orthogonal). 

F.2.1.6 Eigenvectors and Eigenvalues 

If A is an n × n matrix and if 

 AX = λX (Fweb-63) 

for some nonzero vector X and scalar λ, we say that X is an eigenvector of A and that λ is the corresponding 
eigenvalue. We can rewrite Eq. (Fweb-63) as 

 (A – λ1) X = 0 (Fweb-64) 

so we see from Eq. (Fweb-41) that λ is an eigenvalue of A if and only if 

 det (A – λ1) = 0 (Fweb-65) 

This is called the characteristic equation for A. It is an nth-order equation for λ and has n roots, counting 
multiple roots according to their multiplicity. 

Because the equation AX = λX is unchanged by multiplying both sides by a scalar s, it is clear that sX is 
an eigenvector of A if X is. This freedom can be used to normalize the eigenvectors, i.e., to choose the 
constant so that X · X = 1. From n eigenvectors of A, X(i), i = 1,2,...,n, we can construct the matrix 
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P ≡

X1
(1) X1

(2) X1
(3) " X1

(n)

X2
(1) X2

(2) X2
(3) " X2

(n)

# # # #
Xn

(1) Xn
(2) Xn

(3) " Xn
(n)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (Fweb-66) 

Matrix multiplication and the eigenvalue equation [Eq. (Fweb-63)] give 

 

   

AP =

λ1X1
(1) λ2 X1

(2) " λn X1
(n)

λ1X2
(1) λ2 X2

(2) " λn X2
(n)

# # #
λ1Xn

(1) λ2 Xn
(2) " λn Xn

(n)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= PΛ  (Fweb-67) 

 where Λ is the diagonal matrix 

 

 

Λ =

λ1 0 " 0
0 λ2 " 0
# # #
0 0 " λn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (Fweb-68)  

The matrix P is nonsingular if and only if the n eigenvectors are linearly independent. In this case, 

 Λ = P−1AP  (Fweb-69) 

and we say that A is diagonalizable by the similarity transformation P–1AP. If A is a normal matrix, we can 
choose n eigenvectors that are orthonormal, or simultaneously orthogonal and normalized: 

 X( i) ⋅X( j ) = δ i
j ≡

0 i ≠ j
1 i = j
⎧
⎨
⎩

 (Fweb-70)  

When the eigenvectors are orthonormal, P is a unitary matrix and A is diagonalizable by the unitary 
transformation Λ = P†AP. Any square matrix can be brought into Jordan canonical form [Hoffman and 
Kunze, 1961] by a similarity transformation 

 J = P–1AP (Fweb-71) 

where the matrix J has the eigenvalues of A on the main diagonal and all zeros below the main diagonal. It 
follows from Eqs. (Fweb-71), (Fweb-59), and (Fweb-60) that the trace of A is equal to the sum of its 
eigenvalues, and the determinant of A is equal to the product of its eigenvalues; i.e., 

 trA = λ
i=1

n

∑ i  (Fweb-72)  

 detA = λ1λ2…λn (Fweb-73) 

Many algorithms exist for finding eigenvalues and eigenvectors of matrices, several of which are 
discussed by Carnahan, et al., [1969] and by Stewart [1973]. Using Eq. (Fweb-61), we can see that the 
eigenvalues of Hermitian matrices are real numbers and the eigenvalues of unitary matrices are complex 
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numbers with absolute value unity. Because the characteristic equation of a real matrix is a polynomial 
equation with real coefficients, the eigenvalues of a real matrix must either be real or must occur in complex 
conjugate pairs. 

The case of a real orthogonal matrix deserves special attention. Because such a matrix is both real and 
unitary, the only possible eigenvalues are +1, –1, and complex conjugate pairs with absolute value unity. It 
follows that the determinant of a real orthogonal matrix is (–1)

m
 where m is the multiplicity of the root 

λ = –1 of the characteristic equation. A proper real orthogonal matrix must have an even number of roots at 
λ = –1, and thus an even number for all λ ≠ 1, because complex roots occur in conjugate pairs. Thus, an 
n × n proper real orthogonal matrix with n odd must have at least one eigenvector with eigenvalue +1. This 
is the basis of Euler’s Theorem, discussed in Section 12.1. 

It is also of interest to establish that the eigenvectors of a real symmetric matrix can be chosen to be real. 
The complex conjugate of the eigenvector equation, Eq. (Fweb-63), is AX* = λX*, because both A and λ 
are real. Thus, X* is an eigenvector of A with the same eigenvalue as X. Now, either X = X*, in which case 
the desired result is obtained, or X ≠ X*. In the latter case, we can replace X and X* by the linear 
combinations X + X* and i(X – X*), which are real eigenvectors corresponding to the eigenvalue λ. Thus, 
we can always find a real orthogonal matrix P to diagonalize a real symmetric matrix A by Eq. (Fweb-69). 

F.2.1.7 Functions of Matrices 
Let f(x) be any function of a variable x, for example, sin x or exp x. We want to give a meaning to f(M), 

where M is a square matrix. If f (x) has a power series expansion about x = 0,  

 f x( )= anxn

n=0

∞

∑  (Fweb-74)  

then we can formally (i.e., ignoring questions of convergence) define f(M) by 

 f M( )= an M n

n=0

∞

∑  (Fweb-75)  

with the same coefficients an. It is clear that f(M) is a square matrix of the same order as M. If M is a 
diagonalizable matrix, then by Eq. (Fweb-69),  

 M = PΛ P−1  (Fweb-76)  

where P is the matrix of eigenvectors defined by Eq. (Fweb-66), and Λ is the diagonal matrix of 
eigenvalues. Then, 

 
  
M n = PΛ P−1( )n = PΛn P−1  (Fweb-77)  

and 

 

   

f M( )= P anΛ
n

n=0

∞

∑
⎛

⎝⎜
⎞

⎠⎟
P−1 = P

f λ1( ) 0 " 0

0 f λ2( ) " 0

# # #
0 0 " f λn( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

P−1  (Fweb-78)  

If M is a diagonalizable matrix, Eq. (Fweb-78) gives an alternative definition of f(M) that is valid when 
f(x) does not have a power series expansion, and agrees with Eq. (Fweb-75) when a power series expansion 
exists. 
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As an example, consider 
  
exp

1
2
Ωt

⎛
⎝⎜

⎞
⎠⎟

, where Ω is the 4 × 4 matrix introduced in Section 16.1, 

 

Ω =

0 ω3 −ω 2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

Matrix multiplication shows that 

  
Ω2 = − ω1

2 +ω2
2 +ω3

2( )1 ≡ −ω 2 1 , 

so it follows that 

Ω2k = (–1)k ω2k 1 

Ω2k+1 = (–1)k ω2k Ω 

for all nonnegative k. Now,  

 

   

exp
1
2
Ωt

⎛
⎝⎜

⎞
⎠⎟
=

1
2
Ωt

⎛
⎝⎜

⎞
⎠⎟

n!

n

=

1
2
Ωt

⎛
⎝⎜

⎞
⎠⎟

2k

2k( )! +

1
2
Ωt

⎛
⎝⎜

⎞
⎠⎟

2k+1

2k +1( )!

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

k=0

∞

∑
n=0

∞

∑

= 1
−1( ) 1

2
ω t

⎛
⎝⎜

⎞
⎠⎟

2k

2k( )!k=0

∞

∑ +Ωω−1

−1( )k 1
2
ω t

⎛
⎝⎜

⎞
⎠⎟

2k+1

2k +1( )!k=0

∞

∑

= 1cos
1
2
ω t

⎛
⎝⎜

⎞
⎠⎟
+ Ωω−1 sin

1
2
ω t

⎛
⎝⎜

⎞
⎠⎟

=

c n3s −n2s n1s
−n3s c n1s n2s
n2s −n1s c n3s
−n1s −n2s −n3s c

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (Fweb-79)  

where  

c ≡ cos
1
2
ωt

⎛
⎝⎜

⎞
⎠⎟

 

s ≡ sin
1
2
ωt

⎛
⎝⎜

⎞
⎠⎟

 

ni ≡ ωi / ω     i =1,2,3 
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This example shows that the matrix elements of f(M) are not the functions f of the matrix elements of M, in 
general.  

F.2.1.8 Vector Calculus 

 Let φ be a scalar function of the n arguments X1,X2,...,Xn. We consider the arguments to be the 
components of a column vector 

X ≡ [X1,X2,...,Xn]T 
 
The n partial derivatives of φ with respect to the elements of X are the components of the gradient of φ, 
denoted by 

 
    

∂φ
∂X

≡
∂
∂X1

,
∂
∂X2

, " ,
∂
∂Xn

⎡

⎣
⎢

⎤

⎦
⎥  (Fweb-80)  

Note that ∂φ/∂X is considered a 1 × n row matrix. If we eliminate the function φ from Eq. (Fweb-80), we 
obtain the gradient operator 

 
    

∂
∂X

≡
∂
∂X1

,
∂
∂X2

, " ,
∂
∂Xn

⎡

⎣
⎢

⎤

⎦
⎥  (Fweb-81)  

The matrix product of the 1 × n gradient operator with an n × 1 vector Y yields a scalar, the divergence 
of Y, which we denote by 

 
∂
∂X
⋅Y ≡

∂Yi

∂Xii=1

n

∑  (Fweb-82)  

The dot is used to emphasize the fact that the divergence is a scalar, although the usage is somewhat 
different from that in Eq. (Fweb-23). 

The mn partial derivatives of an m-dimensional vector Y with respect to X1,X2,…,Xn can be arranged in 
an m × n matrix denoted by 

 
∂Y
∂X

≡
∂Yi

∂X j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (Fweb-83)  

This is like an outer product of Y and ∂/∂X; however, the analogy is not perfect because the gradient 
operator appears on the right in the matrix product sense and on the left in the operator sense.  

F.2.1.9 Vectors in Three Dimensions 
In this section, we only consider vectors with three real components. For three-component vectors, three 

products are defined: the dot product, the outer product, and the cross product. The cross product, or vector 
product, is a vector defined by 

 

   

U × V ≡

U2V3 −U3V2

U3V1 −U1V3

U1V2 −U2V1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (Fweb-84)  

The following identities are often useful: 

    U ⋅V ≡U1V1 +U2V2 +U3V3 =UV cosθ  (Fweb-85a) 
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 U × V =UV sinθ  (Fweb-85b) 

where θ (0 ≤ θ ≤ 180°) is the angle between U and V. In addition, 

 U × V= −V × U  (Fweb-86) 

 U ⋅ U × V( )= 0  (Fweb-87) 

 

   

U ⋅ V × W( )= V ⋅ W × U( )= W ⋅ U × V( )=
U1 U2 U3

V1 V2 V3

W1 W2 W3

 (Fweb-88)  

 

  

U ⋅ V × W( )⎡⎣ ⎤⎦
2
= U × V( )⋅ V × W( )× W × U( )⎡⎣ ⎤⎦

= U2V2W2 − U2 V ⋅W( )2 − V2 U ⋅W( )2 − W2 U ⋅V( )2 + 2 U ⋅V( ) V ⋅W( )W ⋅U( )
 (Fweb-89) 

 
 
U × V × W( )= V U ⋅W( )− W U ⋅V( ) (Fweb-90) 

 
 
0 = U × V × W( )+ V × W × U( )+ W × U × V( ) (Fweb-91) 

 
 
U × V( )⋅ W × X( )= U ⋅W( ) V ⋅X( )− U ⋅X( ) V ⋅W( ) (Fweb-92) 

The following identity provides a means of writing the vector W in terms of U, V, and U × V, if U × V ≠ 0: 

 

 

U × V( )⋅ U × V( )⎡⎣ ⎤⎦W = V × U( )⋅ V × W( )⎡⎣ ⎤⎦U + U × V( )⋅ U × W( )⎡⎣ ⎤⎦V

+ W ⋅ U × V( )⎡⎣ ⎤⎦U × V
 (Fweb-93) 

If A is a real orthogonal matrix, 

 
  

AU( )× AV( ) = ± A U × V( ) (Fweb-94) 

where the positive sign holds if A is proper, and the negative sign if A is improper. 
The tangent of the rotation angle from V to W about U (the angle of the rotation in the positive sense 

about U that takes V × U into a vector parallel to W × U) is 

 
  
tanΘ =

U U ⋅ V × W( )
U2 V ⋅W( )− U ⋅V( )U ⋅W( ) (Fweb-95)  

The quadrant of Θ is given by the fact that the numerator is a positive constant multiplied by sin Θ, and the 
denominator is the same positive constant multiplied by cos Θ. If, U, V, and W are unit vectors, Θ is the 
same as the rotation angle on the celestial sphere defined in Appendix A. Equation (Fweb-95) is derived in 
Section 7.3. [See Eqs. (7-57).] 
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